Sunday, September 29, 2019

Design Lab Essay

Investigate the amount of energy given off from liquid fuel cells Calorimeter is a device used to measure the heat of chemical reactions, physical changes and used to determine the amount of heat released or absorb during a chemical reaction. Fuel which is used every day as a source of energy cans combust giving of different amounts of energy. In this experiment the combustion of liquid candle will be used to find the change in temperature of 20 ml beaker of water at different times. Using this experiment, we can used the energy given of by the candle fuel to determine how other fuels used in everyday life gives off energy and how to improve these conditions. Problem: how would change in time affect the temperature of water while heated by a liquid fuel? Hypothesis: if the beaker of water burns for a long time, then the temperature would be greater from the original temperature than the beaker that burns for less amount of time. Procedures: Materials: * Goggles * Apron * Beakers * Water * Flame (candle) * Stopwatch * Pencil * Paper * Ring stands * Lighter * Thermometer * Graduated Cylinder * Wire Gauze Procedure 1. Collected all necessary materials 2. Put on your apron and goggles 3. Set up the beaker in the ring stand on top of the wire gauze 4. Measure about 20 ml of water with the graduated cylinder and place on top of the wire gauze in the ring stand. 5. Using the thermometer measure the temperature of the water and record it under control group. 6. Place the liquid fuel under the beaker and carefully light the candle 7. Using the stopwatch, start the time for one minute and blow out the candle after the minute has passed. 8. After you have blown out the candle, record the new temperature of the water. 9. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one. 10. Then repeat the steps 4-9 two more times for the control group. 11. After doing 3 trials for the control, then Measure about 20 ml of water with the graduated cylinder 12. measure the temperature of the water and record it under 2 minute trial 13. Place the liquid fuel under the beaker and carefully light the candle 14. Using the stopwatch, start the time for 2 minutes and blow out the candle after 2 minutes has passed 15. After you have blown out the candle, record the new temperature of the water. 16. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one. 17. Then repeat the steps 12-16 two more times for the 2 minute trial. 18. After doing 2 minute trial, then Measure about 20 ml of water with the graduated cylinder for 3 minute trial. 19. measure the temperature of the water and record it under 3 minute trial 20. Place the liquid fuel under the beaker and carefully light the candle 21. Using the stopwatch, start the time for 3 minutes and blow out the candle after 3 minutes has passed 22. After you have blown out the candle, record the new temperature of the water under the 3 minutes trial. 23. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one. 24. Then repeat the steps 18-23 two more times for the 3 minute trial. 25. After doing 3 minute trial, then Measure about 20 ml of water with the graduated cylinder for 4 minute trial. 26. measure the temperature of the water and record it under 4 minute trial 27. Place the liquid fuel under the beaker and carefully light the candle 28. Using the stopwatch, start the time for 4 minutes and blow out the candle after 4 minutes has passed 29. After you have blown out the candle, record the new temperature of the water under the 4 minutes trial. 30. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one. 31. Then repeat the steps 25-30 two more times for the 4 minute trial. 32. Once all data has been collected, then analyze your date and write the conclusion. Data Uncertainty Equipment Uncertainty Beaker à ¯Ã‚ ¿Ã‚ ½ 0.01 ml Thermometer à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C Stopwatch à ¯Ã‚ ¿Ã‚ ½ 0.01 seconds Graduated Cylinder à ¯Ã‚ ¿Ã‚ ½ 0.01 ml Control-1 minute Trial 1 Amount of water Initial Temp Final Temp Change in Temp Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp 2 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp 3 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp 4 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp Q = mc?T Q Mass Change in Temp C 4.18 J/G à ¯Ã‚ ¿Ã‚ ½C Processed Data Uncertainty Equipment Uncertainty Beaker à ¯Ã‚ ¿Ã‚ ½ 0.01 ml Thermometer à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C Stopwatch à ¯Ã‚ ¿Ã‚ ½ 0.01 seconds Graduated Cylinder à ¯Ã‚ ¿Ã‚ ½ 0.01 ml Control-1 minute Trial 1 Amount of water Initial Temp Final Temp Change in Temp Trial 2 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22.45 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 31.30 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 9 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C Trial 3 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22.40 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 30.65 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 8 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C 2 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22.95 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 40.40 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 18 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp 3 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22.60 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 50.75 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 28 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22.80 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 50.20 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 28 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C 4 min Trial Trial 1 Amount of water Initial Temp Final Temp Change in Temp 20 à ¯Ã‚ ¿Ã‚ ½ 0.01 ml 22 .60à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 56.15 à ¯Ã‚ ¿Ã‚ ½ 0.01 à ¯Ã‚ ¿Ã‚ ½C 34 à ¯Ã‚ ¿Ã‚ ½ 0.02 à ¯Ã‚ ¿Ã‚ ½C Trial 2 Amount of water Initial Temp Final Temp Change in Temp Trial 3 Amount of water Initial Temp Final Temp Change in Temp Q = mc?T Q Mass Change in Temp C 4.18 J/G à ¯Ã‚ ¿Ã‚ ½C Uncertainties of data ml of water 0.01ml /20.00 ml à ¯Ã‚ ¿Ã‚ ½ 100 % 0.05% Beaker 0.01ml /20.00 ml à ¯Ã‚ ¿Ã‚ ½ 100 % 0.05% Time 0.01 min /1 min à ¯Ã‚ ¿Ã‚ ½ 100 % 1.0% Independent Variables Independent Variable 1 (1 minute) 0.01 min /1 min à ¯Ã‚ ¿Ã‚ ½ 100 % 1.0% Independent Variable 2 (2 minutes) 0.01 min /2 min à ¯Ã‚ ¿Ã‚ ½ 100 % 0.5% Independent Variable 3 (3 minutes) 0.01 min /3 min à ¯Ã‚ ¿Ã‚ ½ 100 % 0.33% Independent Variable 4 (4 minutes) 0.01 min /4 min à ¯Ã‚ ¿Ã‚ ½ 100 % 0.25% Initial Temperatures Control-1 minute T1. Temperature (22.50) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.50 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T2. Temperature (22.45) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.45 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T3. Temperature (22.40) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.40 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% 2 Minute Trial T1. Temperature (22.95) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.95 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T2. Temperature (22.40) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.40 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T3. Temperature (22.40) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.40 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% 3 Minute Trial T1. Temperature (22.60) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.60 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T2. Temperature (22.75) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.75 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T3. Temperature (22.80) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.80 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% 4 Minute Trial T1. Temperature (22.60) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.60 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T2. Temperature (22.75) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.75 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T3. Temperature (22.25) 0.01 à ¯Ã‚ ¿Ã‚ ½C /22.15 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% Final Temperature Control T1. Temperature (30.00) 0.01 à ¯Ã‚ ¿Ã‚ ½C /30.00 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.03% T2. Temperature (31.30) 0.01 à ¯Ã‚ ¿Ã‚ ½C /31.30 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.03% T3. Temperature (30.65) 0.01 à ¯Ã‚ ¿Ã‚ ½C /30.65 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.03% 2 Minute Trial T1. Temperature (40.40) 0.01 à ¯Ã‚ ¿Ã‚ ½C /40.40 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% T2. Temperature (41.70) 0.01 à ¯Ã‚ ¿Ã‚ ½C /41.70 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% T3. Temperature (40.55) 0.01 à ¯Ã‚ ¿Ã‚ ½C /40.55 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% 3 Minute Trial T1. Temperature (50.75) 0.01 à ¯Ã‚ ¿Ã‚ ½C /50.75 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% T2. Temperature (50.35) 0.01 à ¯Ã‚ ¿Ã‚ ½C /50.35 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% T3. Temperature (50.20) 0.01 à ¯Ã‚ ¿Ã‚ ½C /50.20 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.02% 4 Minute Trial T1. Temperature (56.15) 0.01 à ¯Ã‚ ¿Ã‚ ½C /56.15 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T2. Temperature (55.90) 0.01 à ¯Ã‚ ¿Ã‚ ½C /56.15 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% T3. Temperature (56.20) 0.01 à ¯Ã‚ ¿Ã‚ ½C /56.15 à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ 100 % 0.04% Q = mc?T of control Q = 4.18 J/G à ¯Ã‚ ¿Ã‚ ½C à ¯Ã‚ ¿Ã‚ ½ (0.048g) à ¯Ã‚ ¿Ã‚ ½ change in Temperature Q= 20.00 ml (1L/1000ml)(1mol/22.4)(18.08/1 mol) = 0.0161 g Conclusion In this experiment it was proven that when certain about of water are left for a certain time over a flame it would change in temperature. The longer the water is over the flame, the temperature increased which proved the hypothesis to be correct. This experiment proved that the more time water is heated, the higher the temperature would be. If this experiment was to be conducted the next time, there would be a lot of changes. First the control would be in the temperature of water without any heated added to it. Then the time it was to be heated would be longer than one minute different in each different trial. More trials of the same time would be conducted to make sure that the experiment would be performed correctly.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.